
1806 Foster : Soqbtion Hysteresis. Part I I .  

332. Xorption Hysteresis. Part II.* The R61e of the 
Cylindrical Meniscus Effect. 

By A. GRAHAM FOSTER. 
The correct formulation of the equations for the cylindrical meniscus 

effect is discussed and applied to a critical review of Cohan’s theory of the 
point of hysteresis inception. It is shown that during the early stages of 
the sorption process the effect assists layer formation and that Cohan’s 
mechanism for pore blocking becomes operative later, only if certain 
conditions are fulfilled. The potential due to layer adsorption is calculated 
from Brunauer, Emmett, and Teller’s (B.E.T.) theory and compared with 
that due to capillary condensation in the same pore. The total potential, 
arising from the combination of layer adsorption with the cylindrical 
meniscus effect, passes through a minimum at some stage of the sorption 
process and it is suggested that hysteresis will occur only when the Kelvin 
potential curve intersects this total potential curve before the minimum is 
reached. When both the pore radius and the number of adsorbed layers are 
large, a simplified mathematical treatment leads to the prediction that 
hysteresis is possible when the product Vy/RTo for the adsorbed liquid 
exceeds unity (where V is the molar volume, y the surface tension, and cr the 
molecular diameter). 

THE open-pore theory of sorption hysteresis (Foster, Trans. Faraday SOL, 1932, 28, 645) 
assumes that the equilibrium pressures on the desorption branch of the hysteresis loop 
are determined by the Kelvin equation, and attributes the higher pressures observed 
during adsorption to delayed meniscus formation. The adsorptive forces become weaker 

* Part I, J .  Phys. Colloid. Chew., 1961, 55, 638. 
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as layer formation proceeds and molecules are held at  a greater distance from the surface. 
At the same time, the space remaining empty in the centre of the capillaries becomes 
smaller and a point is reached at  which the cohesive forces should, by capillary condensation, 
be able to effect a greater lowering of vapour pressure than the adsorptive forces. It 
is, however, not possible for condensation to occur at this stage unless the pores are already 
blocked at  their narrowest points by the adsorbed layer. If no meniscus is present the 
liquid must remain on the walls until a higher pressure is reached. In its original form the 
open-pore theory assumed that layer adsorption persisted until enough liquid was present 
to block the pores and form a meniscus. It was later pointed out (Foster, Proc. Roy. Soc., 
1934, A ,  147, 138) that continued layer adsorption would be assisted by a capillary 
condensation effect, due to the cylindrical meniscus presented by the adsorbed layer, which 
produces a free-energy decrease approximately one-half of that due to normal condensation 
at a spherical meniscus in a pore of the same radius. An analysis of the extensive data of 
Lambert and Clark (kbid., 1929, A ,  122, 497) for the sorption of benzene by ferric oxide gel 
showed that the desorption equilibria were consistent with the capillary theory, whilst 
the adsorption equilibria were consistent with the Polanyi “ potential ” theory (Verhandl. 
deut. physik. Ges., 1916, 18, 55) of multimolecular adsorption. Later Brunauer, Deming, 
Deming, and Teller (J .  Amer. Chem. Soc., 1940, 62, 1723) showed that these adsorption 
data could be interpreted satisfactorily by a modification of the original B.E.T. theory. 

In  Cohan’s version (J .  Amer. Chem. SOC., 1944, 66, 98) of the open-pore theory, multi- 
layer formation is ignored and all sorption effects beyond the monolayer are attributed to  
capillary condensation. During adsorption, the equilibria are determined by the cylindrical 
meniscus effect, and during desorption by the normal condensation process in accordance 
with the Kelvin equation. Both branches of the loop are thus attributed to capillary 
effects, and the theory leads to a simple quantitative relation between the adsorption and 
desorption pressures in pores of given radius. It is further predicted that the pressure a t  
which hysteresis begins (point of hysteresis inception) should correspond to a Kelvin radius 
r = 2a, where a is the diameter of the adsorbed molecule (or, more strictly, the thickness 
of an adsorbed layer). Emmett and Cines (J .  Phys. Cbll.  Chem., 1947, 51, 1260) have 
pointed out that the observed radii generally lie between 20 and 3a and have predicted a 
value of 30, a slight modification of Cohan’s original argument being used. Some recent 
observations (Brown and Foster, J .  Phys. Coll. Chem., in the press) on the sorption of amines 
by silica gels also indicate values lying between 20 and 3a. 

Cohan used an approximate equation for the cylindrical meniscus effect which is not 
accurate for small radii, and the original object of this paper was to repeat his calculations, 
using the correct equation. This led to the view that a value 30 for the radius at the point 
of hysteresis inception could be predicted by assuming more extensive layer formation 
during adsorption than during desorption-a view which, although quite plausible, is 
untenable in a theory which postulates that layer adsorption does not extend beyond the 
monolayer. In  attempting to develop a more consistent theory, the basic ideas of the 
author’s original version have been combined with Cohan’s idea that the cylindrical 
meniscus effect provides a mechanism for pore filling. The following discussion thus 
falls into three parts : (a)  a correct formulation of the equations for the cylindrical meniscus 
effect, (b )  a critical review of Cohan’s theory of the point of hysteresis inception, and 
(c) an attempt to combine the basic ideas of the two versions of the “ open-pore ” theory. 

Theory of the Cylindrical Menisczts Efect.-According to the Kelvin equation the vapour 
pressure of a liquid of surface tension y and molar volume Y contained in a 
cylinder of radius r is given by 

where Po is the saturation vapour pressure over a plane surface a t  the same temperature T .  
Since there must be an adsorbed layer present on the walls of the pore before condensation 
can occur, r is not the true pore radius ro but is lower by an amount D which represents 
the thickness of this layer. It is generally assumed that the vapour pressure over a 
cylindrical meniscus is given by 

p = P o  exp(-2Vy/rRT) . . . . . . . (1) 

9 = p ,  exp( - Vy/rRT) . . . . . . . . (2) 
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since the Gauss curvature of the cylindrical surface is half that of the corresponding 
spherical surface. However, this is no longer quite true when r is of the same order as the 
molecular diameter 0. The correct relation (Foster, EOC. cit., 1934) is 

(3) p = fi0 exp(-Vy/(r - o/2)RT} . . . . . . 
which reduces to (2) when Y > 0. An alternative form of this equation, which will be 
used later, is 

where Y is taken as theJinal radius, the initial radius being Y + 0. 

Point of Hysteresis Inception.-The essential feature of Cohan’s theory is that when the 
pressure, during adsorption, reaches a value $a given by equation (2), the capillary fills 
completely, whereas during desorption the same pore will not empty until the pressure 
has been reduced to the lower value p d  given by equation (1). The reason for complete 
filling at pa is that, although initially the pressure must by raised to this value in order 
that one more layer may condense on the walls, yet once this layer has formed, a second 
can then form at  the still lower pressure corresponding to r - 0, and so on until the pore is 
completely filled. Cohan assumes that the mechanism of adsorption on a porous solid 
consists in the formation of a unimolecular layer followed by capillary condensation, but 
in applying the Kelvin equation he takes the radius as ro and not yo  - 0. However, in 
considering the application of equation (2), the effective radius is taken as ro - 0, and 
the point of hysteresis inception is calculated in the following manner. The desorption 
pressure is given by 

whereas the adsorption pressure pa is given by 

p = e0 exp(-Vy/(r + 0 / 2 ) ~ T )  . . . . . . (34 

p d  = Po exp(-2Vy/ro~T) . . . . . . . . (4) 

The condition for pa = $a is that 2/r0 = l/(ro - 0) or ro = 20. This is the radius at the 
point of hysteresis inception, a t  which both equations (1) and (2) give the same value for p.  
It is clear that, unless the effective radii during adsorption and desorption are assumed 
to be different (eg., in this case, ro and yo - a), it is impossible to derive any relation 
between r and 0, thus if the radius is taken as ro in both cases, then pa is always >pa. The 
assumption that Y = ro during desorption but r = ro - 0 during adsorption, though quite 
inconsistent with the postulate of an initial monolayer, is essential to Cohan’s theory in 
order to predict the value ro = 20 which he maintains is in agreement with experiment. 
Emmett and Cines (loc. cit.) have also commented on this inconsistency and have sought to 
resolve it by assuming that two adsorbed layers are present on the walls during adsorption 
but that only one remains during desorption. This makes r = ro - 20 for adsorption and 
r = yo - 0 for desorption, and substitution of these values in (1) and (2) makes $a = Pa 
when 2/(r0 - 0) = l/(ro - 20)  or yo = 30. It is necessary to distinguish carefully between 
yo, the true pore radius, and r, the value obtained by the usual method of calculation based 
on the Kelvin equation. Thus, Cohan’s result ro = 20 and that of Emmett and Cines 
(yo = 30) correspond to identical Kelvivl radii, since Cohan puts Y = ro whilst Emmett and 
Cines put r = yo  - 0, hence if ro = 30, Y must be 20. 

It is now necessary to see how these arguments are modified by the use of equation (3) 
instead of (2). Cohan’s relation becomes 2/ro = l/(ro - 4 p  - 0) or ro = 30, whilst the 
method of Emmett and Cines gives Y = 30 or ro = 40. If, on the other hand, one assumes 
that the thickness of the adsorbed layer remains the same during adsorption, then 2/r = 
l / ( r  - &r) or r = 0 and r0 = 20 for one adsorbed layer. This result is clearly not in agree- 
ment with experiment since the observed values of r lie between 20 and 30. It therefore 
seems to be necessary to revert to the less simple view that the number of adsorbed layers 
does not remain constant and to consider whether this concept has any theoretical basis. 

Equilibrium betweert Adsorbed and Covtdertsed Liquid.-The equilibrium pressure due to 
capillary condensation in a pore of radius r0 can only be calculated by means Qf the Kelvin 
equation if the number of adsorbed layers (n) is known, since the Kelvin radius r = ro - nyto. 
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In  general, there is no definite and unambiguous method of determining lz, although in 
many systems hysteresis begins when the total amount adsorbed corresponds to roughly 
twice the amount required to form a complete monolayer. If it be assumed that layer 
adsorption is followed by capillary condensation as the amount adsorbed increases, then 
conversely, during desorption the initial stages represent an emptying of pores filled by 
capillary condensation and a film of liquid several molecules thick will remain behind on 
the walls during the later stages. The thickness of this layer will depend on the relative 
magnitudes of the forces causing layer adsorption and those causing condensation. The 
thicker the adsorbed layer, the larger will be the value of n and hence the smaller the value 
of r,  so that a thick adsorbed layer would at  first sight appear to favour a low condensation 
pressure. This is, of course, true, but the higher the value of n, the greater is the pressure 
over the multilayer, and presumably a balance between the cohesive and adsorptive 
forces occurs when the equilibrium pressures due to the two mechanisms are equal. It 
should therefore be possible to obtain an approximate solution by equating the pressure 
given by the Kelvin equation to that given by the B.E.T. multilayer adsorption theory 
for the same value of n. For the purpose of a rough calculation, one of the simple limiting 
cases of the general B.E.T. equation may be employed. Thus, when the heat of adsorption 
in the first layer is very much greater than that in the subsequent layers, the amount 
adsorbed a,  expressed as a multiple of the monolayer capacity, is given by 

a = 1/(1- x) . . . . . . . . . (6) 
where x is the relative pressure (Foster, J., 1945, 770). The Kelvin equation may be 
applied by assuming for the product V y  a rough average value of 1200, which is quite close 
to the actual values for water and alcohol. However, the quantity a (which is identical 
with V / V ,  in the original B.E.T. notation) does not necessarily represent the actual number 
of adsorbed layers but merely the ratio of the amount adsorbed to that which would be 
required to cover the surface completely with a monolayer. According to the B.E.T. 
theory, a should not be identified with any particular value of n, but Halsey ( J .  Chem. 
Phys., 1948, 16, 931) maintains that, until a given layer is almost complete, further 
adsorption in the next layer is negligible, and a similar picture has also been suggested by 
Tompkins (Trans.  Faraday SOC., 1950, 46, 569) and by Barrer and Robins (ibid., 1951, 4’7, 
785). It therefore appears reasonable to regard a and n as identical and to argue that the 
transition between layer adsorption and capillary condensation occurs when equations (1) 
and (2) give the same value for x. However, once the existence of multimolecular 
adsorption is admitted, the free-energy decrease during the filling of a pore can no longer 
be attributed solely to capillary forces, but must be regarded as consisting of t u o  parts, 
one due to the layer adsorption forces and the other due to capillary forces. The original 
version of the open-pore theory recognised this fact but failed to formulate it quantitatively ; 
Cohan’s version, with less justification, since it appeared some years after the B.E.T. 
theory, ignores it and endeavours to explain hysteresis in terms of equations (4) and (5) alone. 

Calculation of Potential Curves for Adsorptiort and Capillary Condensation.-The logical 
basis for a quantitative treatment is to find a simple expression for the layer ‘‘ adsorption 
potential ” (or free-energy decrease) t,he, and to combine this with the potential +c due to 
the cylindrical meniscus effect in order to obtain the total free-energy decrease accompanying 
the formation of a given adsorbed layer. Since +e is initially bigh and falls off as layer 
formation proceeds, whilst #c is initally low and increases as adsorption proceeds (because 
the radius of the free space remaining in the centre of the pore is decreasing), the total 
potential 4 (= $e + &) must pass through a minimum. Before this minimum is reached, 
the lzth layer is more stable than the (n + 1)th layer and will be nearly completed before 
the latter forms appreciably. Beyond this minimum, the lzth layer becomes less stable 
than the (n + 1)th and the pores then fill completely at the pressure corresponding to this 
potential. Thus, the effect of taking layer adsorption into account is to show that the 
cylindrical meniscus effect assists layer formation initially and operates as a pore-blocking 
mechanism only after a number of adsorbed layers have been formed. If true capillary 
condensation is to be stable, the potential #= given by the Kelvin equation (+= = 
RT log Po/+  = 2Vy/r) cannot be less than the total potential +. $=, like #c, is initially 
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small, and for the same reasons increases as more layers are formed. When the curve 
showing the variation of with the number of adsorbed layers a, intersects the +-a curve, 
the pressure over the spherical meniscus of the condensed liquid will be equal to that over 
the cylindrical meniscus of the adsorbed liquid and no further layer adsorption will occur, 
since any liquid so held would have a higher pressure, corresponding to the lower potential 
of the +-a curve (which then lies below the # ~ - a  curve), so that the pore would fill by 
capillary condensation at  this pressure provided that the spherical meniscus were already 
present. If the pore is open at both ends and has a uniform diameter, or if it is tapering 
and is not yet blocked at  its narrowest part, there will be no meniscus present and further 
layer adsorption will occur until the minimum of the +-a curve is reached and the pores 
block completely. 

From the typical potential curves plotted in the figure, the derivation of which is 
described later, it is seen that the point of intersection may lie on either side of the 
minimum. The basic idea of the new theory is that hysteresis will be observed only when 
the +=--a and the +-a curve intersect before the latter reaches its minimum value. True 

0 2 4 6 8 1 U  
Numbe~ o f  /ayers(n) 

capillary condensation becomes thermodynamically stable before the necessary meniscus 
can be formed, so that during adsorption the pores fill at the pressure corresponding to the 
minimum of the +--a curve, whereas during desorption, when a meniscus has been formed, 
the same pores do not empty until the pressure corresponding to the point of intersection 
is reached; this point must necessarily lie a t  a higher potential than the minimum, and 
hence correspond to a lower pressure. 

During desorption the states represented by that part of the +-a curve lying to the 
right of the minimum are all unstable relative to the #=-a curve, and the point of intersection 
represents the effective minimum potential at which a stable system can exist during pore 
emptying. The regions where d+/da is positive correspond to unstable states (pressure 
falling with increasing adsorption), which cannot be realised in practice. When the 
intersection occurs after the minimum is reached, there is in theory a transition point 
between layer adsorption and capillary condensation but, since this lies in the experimentally 
unrealisable region, the pores will both empty and fill a t  the pressure corresponding to the 
minimum. 

Conditions for Occurrence of Hysteresis.-The accurate determination of these potential 
curves would make it possible to predict whether or not hysteresis would occur in a given 
system. The simplest, though not necessarily the most exact, basis for quantitative 
treatment is to use the B.E.T. limiting equation (6) to obtain the variation of #e with the 
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distance from the surface (which is assumed to be proportional to the number of adsorbed 
layers). Thus, since x = 1 - l / a ,  this potential is given by 

# e =  - R T l o g x =  -RTlog ( 1  - l / a )  . . . . (7) 

* c  = RT log p , / p  = Vy/ ( r  + 0 / 2 )  

The cylindrical meniscus potential is given by (3a) as 

where r is the radius of the space remaining after the formation of the ath layer. 
expressed as a multiple ma this becomes 

If r is 

*c = 2Vy/(2?2+ 1)a  . . . . . . . . (8) 

and the total potential for the formation of the ath layer in a cylinder of total radius noo 
will be + = +e + t,hc = --RT log (1  - l / a )  + 2Vy/ (2m + 1)a  . . . (9) 

where a + m = M,. The Kelvin potential, $=, which determines the pressure at which 
capillary condensation occurs in the same capillary when a adsorbed layers are present, 
is given by equation (1 )  with the appropriate value of r = na. Hence t , b ~  = 2Vy/ma and 
both the potential curves can be calculated for any given pore radius if the constants V ,  y,  
and cs are known. The figure shows two such sets of curves : (a )  for pore radius 50 A ( 1 0 ~ )  
and V y  = 2520, and ( 6 )  for pore radius 25 A (50) and V y  = 1260. In  the former, the inter- 
section occurs before the minimum is reached, but in the latter, where the capillary forces 
are smaller, layer adsorption predominates and the intersection does not occur until after 
the minimum. The graphical solution of these equations becomes laborious for large 
values of q-,, but fortunately a simple mathematical solution is possible for the limiting case 
where both a and n are large, since the logarithmic term in equation (9) can then be 
expanded and the (2% + 1)  factor in the second term replaced by 2m, giving 

+ = (RT/a) + [b/2a(ulo - a ) ]  . . . . . . * (10) 

where b is the value of 2 V y  expressed in calories per mole. + clearly has a minimum when 

or 
RT/a2 = b/2a(no - a)2  

n , / a = l + K +  . . . . . 
where K = b/2RTo.  The point of intersection occurs when $K = #e + $c or 

whence 
blna = R T / a  + b/2no 

RT/a = b/%a or n,/a = 1 + K . , . 
Thus in large pores, the +a curve has a minimum at a = no/(l + K*) and intersects 

the $=-a curve at a = mo/(l  + K).  When K = 1 the two points coincide and the 
condition for the intersection to occur before the minimum is reached, and hence for 
hysteresis to appear, is that the constant K shall be greater than unity. 

This surprisingly simple result has been derived by considering a highly idealised but 
by no means unrealisable system, but even if the majority of systems encountered in 
practice are more complex, their behaviour must still be partly determined by the same 
parameter K ,  which is proportional to Vy/a. 

If V is regarded as cc a3, then K c c  a2y and it is evident that the molecular diameter is the 
chief factor determining the magnitude of K ,  since y does not show very wide variations 
for most organic liquids. The table, which records the results of some rough calculations, 
shows that K for typical liquids lies between 1.0 and 2.0. It seems that values significantly 
less than unity will not occur frequently, so that, in large pores, hysteresis should actually 
be observed with most liquids. This agrees with the work of Broad and Foster, (J., 1946 
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446) and Brown and Foster (J., 1952,1139) on ferric oxide gel (pore radius -30 A) in which 
large hysteresis loops were observed with all the liquids examined. However, even in pores 
of radius 100 A, the extent of the observed hysteresis areas suggests that only two or 
three adsorbed layers are present. For such a system, with r = 20a and K = 1, equations 
(11) and (12) predict the formation of ten adsorbed layers, hence the quantitative agree- 

Substance 
Water .................................................... 
Methyl alcohol ....................................... 
Ethyl alcohol .......................................... 
Ethylenediamine .................................... 
Benzene ................................................ 
Carbon tetrachloride ................................. 
Toluene ................................................ 
n-Heptylamine ....................................... 

= (A) 
3.5 
4.6 
5.2. 
5.4 
5.9 
6.1 
6.3 
7.2 

V 
18 
40 
58 
67 
88 
98 

107 
151 

Y VY 
72 1296 
22 880 
22 1280 
41 2780 
29 2552 
26 2550 
28 3000 
26 3940 

K 
1.4 
0.8 
1-0 
2.0 
1.7 
1-6 
1.8 
2.1 

ment between simple theory and experiment is poor. To remedy this defect it is necessary 
to have either higher #K or lower z,be values, and since the Kelvin equation is unlikely to be 
seriously in error for large radii, the more probable source of error seems to be in the use of 
the B.E.T. model for layer adsorption. The limiting B.E.T. equation, which was 
deliberately chosen for its simplicity, is derived for a plane surface, and its use for 
adsorption in pores of small radius is not justified. The expansion of the logarithmic 
term of equation (9) to give R T / a  implies that, for large a values, the B.E.T. assumptions 
are equivalent to a potential which falls off inversely as the distance and corresponds to the 
existence of long-range adsorption forces. 

The simple B.E.T. theory thus overestimates the layer adsorption forces at large 
distances, and in order to develop a more exact treatment it is necessary to adopt a more 
realistic model for the adsorption potential. It was suggested by Polanyi (Trans. Faraday 
SOC., 1932,28, 321) that the potential was due to the London dispersion force, which varies 
inversely as the seventh power of the distance. When integrated over the whole surface, 
this leads to an inverse-cube law for the potential, and it is noteworthy that this model 
has recently been adopted by Barrer and Robins (Zoc. cit.) in their attempt to develop an 
alternative to the B.E.T. theory. It is then necessary to assign, somewhat arbitrarily, a 
definite value ($o) to the potential in the first layer, which introduces an additional variable 
into the above equations and it is no longer possible to obtain a simple solution for the 
limiting case because equation (10) will contain a term in l / a 3  and will give a biquadratic 
equation on differentiation. However, the equations are still easily solved by graphical 
methods when definite values are assigned to +o, Y, and 0, but the operations arelaborious. 
It is hoped to discuss these curves in detail in the next paper of this series. For 
the present it can be said that when #o = 4000-1000 cals./mole, the $-a curves fall more 
steeply than those in the figure and intersect the $= curves at  smaller values of a 
corresponding to 2-4 adsorbed layers, thus showing better agreement with experiment. 

The graphical solutions so far obtained show that, for both models, in average systems 
the #=-a curve cuts the $-a curve at or before its minimum when no is large, but that as no 
decreases (a being constant) the point of intersection moves forward and has usually passed 
beyond the minimum by the time ni has been reduced to a value of 4-50. For two 
adsorbed layers, this corresponds to a Kelvin radius of 2-30 and is therefore in agreement 
with the experimental observations on the point of hysteresis inception. 
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